煤自燃预测的支持向量回归方法
  • 247
  • 61
  • 作者

    邓军;雷昌奎;曹凯;马砺;王伟峰;

  • 单位

    西安科技大学安全科学与工程学院 西安科技大学陕西煤火防控重点实验室 徐州安云矿业科技有限公司 中国矿业大学通风防灭火研究所

  • 摘要

    煤自燃温度的准确预测是矿井煤自燃防控的关键。为了科学准确地预测采空区煤自燃温度,在大佛寺煤矿40106综放工作面开展现场观测实验,以现场束管监测系统数据为基础,采用粒子群优化算法(PSO)优化支持向量回归(SVR)参数,建立了煤自燃温度预测的PSO-SVR模型;同时,在保证训练和测试样本不变的前提下,建立了标准SVR模型、BP神经网络(BPNN)模型和多元线性回归(MLR)模型,并与PSO-SVR模型预测结果进行对比分析。MLR,BPNN,SVR和PSO-SVR模型训练样本预测结果的平均绝对百分比误差(MAPE)分别为:5.75%,0.84%,4.16%和1.13%,测试样本预测结果的MAPE分别为:5.17%,3.03%,3.83%和1.34%.结果表明:MLR模型预测结果最差,说明煤自燃温度与气体指标之间的非线性关系更显著,线性模型不宜于煤自燃预测;BPNN模型训练样本预测效果极佳,但测试样本预测效果较差,易出现"过拟合"现象,泛化性较差;PSO-SVR模型预测精度较标准SVR模型有了极大提高,更适宜于煤自燃预测。

  • 关键词

    煤自燃;支持向量回归;粒子群优化;神经网络;

相关问题

主办单位:煤炭科学研究总院出版传媒集团 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院出版传媒集团 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备11019815号-17  技术支持:云智互联