• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
深部沿空留巷顶板变形破坏规律及其控制研究
  • Title

    Research on deformation and failure law and control of roof in deep gob-side entry retaining

  • 作者

    刘具何瑞敏杨朋汤家轩吴建华孔德明

  • Author

    LIU Ju,HE Ruimin,YANG Peng,TANG Jiaxuan,WU Jianhua,KONG Deming

  • 单位

    中国煤炭工业协会咨询中心神华神东煤炭集团有限责任公司东华理工大学 地球科学学院淮南矿业(集团)有限责任公司

  • Organization
    1.Consulting Center of China National Coal Association,Beijing ,China;2.Shenhua Shendong Coal Group Co.,Ltd.,Yulin ,China;3.School of Earth Science East China University of Technology,Nanchang ,China;;4.Huainan Mining(Group) Co.,Ltd.,Huainan ,China
  • 摘要

    为解决深部沿空留巷顶板变形剧烈问题,采用FLAC3D数值模拟与工程验证相结合的方法,研究了顾桥煤矿1115工作面轨道巷基本顶从掘进到二次采动超前影响阶段运动演化规律。结果表明:①顶板变形在掘进阶段呈对称分布,一次采动超前影响阶段出现向工作面侧旋转的偏态特征,顶板下沉曲线交点的斜率为7.25×10-4,留巷阶段顶板向采空侧回转下沉,此时的交点斜率增长了6倍,偏态效应显著加强,二次采动超前影响阶段顶板下沉曲线交点的斜率比留巷期间增长了3.2倍,偏态效应有所增加,但以平移下沉为主;②顶板变形量随着留巷进行逐渐增加,掘进期间巷道顶板最大下沉量为69.2 mm。以后每阶段较前一阶段变形量增长了0.99倍、0.82倍和2.13倍,可见沿空留巷顶板变形逐渐剧烈,支护难度显著增加,应统筹对沿空留巷进行支护设计;③提出了保证直接顶完整、各阶段逐级强化和减弱顶板变形偏态现象的深部沿空留巷顶板控制原则,经工程验证可实现消弱深部沿空留巷顶板剧烈变形。

  • Abstract
    In order to solve the problem of severe deformation of the roof in deep gob-side entry retaining, the combination of FLAC3D numerical simulation and engineering practice were applied to study the evolution law of the basic top of the track roadway of the 1115 working face in Guqiao Coal Mine from the excavation to the secondary mining stage. The results showed that: ① The deformation of the roof is symmetrically distributed during the excavation stage. The slope of the intersection of the roof sinking curve is 7.25×10-4 during the first mining influenced stage, the slope of the intersection point has increased by 6 times during roadway retaining, and the skew effect is significantly enhanced. The slope of the intersection point of the roof sinking curve of the secondary mining stage is 3.2 times bigger than that during the roadway retaining. The skew effect is increased, but mainly due to translational subsidence; ② The deformation of the roof is gradually increased, and the maximum subsidence of the roof of the roadway during the excavation is 69.2mm. In the future, the deformation of each stage increased by 0.99 times, 0.82 times and 2.13 times compared with the previous stage. The deformation of the roof along the roadway is gradually becoming more and more severe, and the difficulty of support is significantly increased. The support design of the roadway along the gob should be coordinated. ③ The principle of roof control for deep mine along the roadway is proposed by the principle of ensuring the completeness of the immediate roof, step-by-step strengthening of each stage and weakening deformation of the roof. The engineering verification can achieve the strong deformation of the roof of the roadway along the deep roadway.
  • 关键词

    深部开采沿空留巷顶板运动偏态效应围岩控制

  • KeyWords

    deep mine; gob-side entry retaining; roof movement; skew effect; control surrounding rock

  • 基金项目(Foundation)
    国家自然科学基金资助项目(51274010)
  • 相关文章
  • 相关专题
  • 图表
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联