• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
煤层瓦斯含量测定技术及装备研究进展
  • Title

    Research progress of coal seam gas content determination technology and equipment

  • 作者

    孙四清杨帆郑玉岐张庆利

  • Author

    SUN Siqing;YANG Fan;ZHENG Yuqi;ZHANG Qingli

  • 单位

    煤炭科学研究总院中煤科工西安研究院(集团)有限公司

  • Organization
    China Coal Research Institute
    CCTEG Xi’an Research Institute(Group) Co., Ltd.
  • 摘要

    瓦斯含量是煤与瓦斯突出危险预测、煤层瓦斯资源量估算、矿井瓦斯治理工程设计的重要参数。围绕如何在大区域准确快速测定煤层瓦斯含量,依托国家科技重大专项、国家自然科学基金和煤炭企业联合基金等项目科技攻关,在取样、测试方面取得了一定进展。主要表现在如下4个方面:①煤层瓦斯含量测定取样经历了孔口接样、岩心管定点取样、压力引射定点取样和密闭取样4个阶段,密闭取样装备保压能力达到11.5 MPa,煤心直径达到38 mm;②针对不同煤层地质条件,发展形成了顺煤层定向长钻孔密闭取样、底板穿层钻孔密闭取样和顶(底)板梳状定向长钻孔密闭取样3种取样技术;③在河南焦作和山西晋城矿区硬煤层中,顺层定向长钻孔取样深度达到516 m,密闭取样法测得煤层瓦斯含量较常规取样法分别平均提高了0.44倍和1.04倍。在安徽淮南矿区碎软煤层中,穿层钻孔密闭取样深度达到209 m,测得煤层瓦斯含量较常规取样法平均提高了0.26倍;在安徽淮北矿区碎软煤层中,顶(底)板梳状钻孔密闭取样深度达到484 m,测得煤层瓦斯含量较常规取样法平均提高了0.19倍,密闭取样法在煤层瓦斯含量测定精度、探测范围上优于常规取样法;④在瓦斯含量测试方面,除了传统解吸法测试,发展了系列煤矿井下瓦斯含量快速测试装备,可实现最快30 min内测得煤层瓦斯含量,一般用于百米孔内的瓦斯含量测试。提出了煤层瓦斯含量测定密闭取样装备需向小型化、轻量化的方向发展,并能实现随钻密闭取样。在测试上,应根据实际情况确定合理的解吸终止限,并将测试装备和密闭取样装备进一步结合,以实现深孔瓦斯含量快速准确测定。密闭取样技术已成为煤层瓦斯含量大区域精准勘查、预测的主要手段,是煤炭安全高效开采的重要技术保障。

  • Abstract

    Gas content is an important parameter for the prediction of coal and gas outburst risk, the estimation of coal seam gas resource, and the design of mine gas control engineering. Focusing on how to accurately and quickly determine the gas content of coal seams in large area, and relying on the National Science and Technology Major Project, the National Natural Science Foundation of China, the Joint Fund of Coal Enterprises and other projects to develop scientific and technological research, some progress had been made in sampling and testing, and the main manifestations were as follows. ① The development of sampling for gas content determination in coal seam has gone through four stages, namely, orifice sampling, core tube spot sampling, pressure injection spot sampling, and sealed sampling. The pressure holding capacity of the sealed sampling equipment reached 11.5 MPa, and the diameter of coal core reached 38 mm. ② According to different geological conditions of coal seams, three types of sampling techniques had been developed, including directional long borehole sealed sampling along coal seam, floor cross-layer borehole sealed sampling, and comb-shaped directional long borehole sealed sampling in roof or floor. ③ In the hard coal seams of Jiaozuo mining area in Henan Province and Jincheng mining area in Shanxi Province, the sampling depth of the directional long borehole along the seam reached 516 m, and the gas content of the coal seam measured by the sealed sampling method was increased by an average of 0.44 and 1.04 times compared with the conventional sampling method, respectively. In the broken soft coal seam of the Huainan mining area in Anhui Province, the sealed sampling depth of the cross-layer borehole reached 209 m, and the measured gas content of the coal seam was increased by 0.26 times on average compared with the conventional sampling method. In the broken soft coal seam of the Huaibei mining area in Anhui Province, the comb drilling sealed sampling depth reached 484 m in roof or floor, and the measured coal seam gas content was 0.19 times higher than that of the conventional sampling method. The sealed sampling method was superior than the conventional sampling method in terms of determination accuracy and detection range of coal seam gas content. ④ In terms of gas content testing, in addition to the traditional natural desorption test, a series of coal mine gas content rapid test equipment had been developed, which can measure the gas content of coal seam within 30 min at the earliest, and was generally used for gas content testing in 100-meter hole. It is proposed that the sealed sampling equipment for coal seam gas content determination needs to be developed in the direction of miniaturization and lightweight, and it can realize sealed sampling with the drilling. In the test, a reasonable desorption termination limit should be determined according to the actual situation, and the testing equipment and sealed sampling equipment should be further combined to achieve the rapid and accurate determination of gas content in deep hole. Sealed sampling technology has become the main means of accurate exploration and prediction of coal seam gas content in large areas, and it is an important technical guarantee for the safe and efficient coal mining.

  • 关键词

    煤层瓦斯含量定点取样密闭取样碎软煤层硬煤

  • KeyWords

    coal seam gas content;fixed-point sampling;sealed sampling;broken soft coal seam;hard coal seam

  • 基金项目(Foundation)
    国家科技重大专项资助项目(2016ZX05045-002-002);中煤科工西安研究院(集团)有限公司科技创新基金资助项目(2018XAYZD09)
  • DOI
  • 引用格式
    孙四清,杨 帆,郑玉岐,等. 煤层瓦斯含量测定技术及装备研究进展[J]. 煤炭科学技术,2024,52(4):164−176.
  • Citation
    SUN Siqing,YANG Fan,ZHENG Yuqi,et al. Research progress of coal seam gas content determination technology and equipment[J]. Coal Science and Technology,2024,52(4):164−176.
  • 相关专题
  • 图表

    Table1

    岩心管提钻取心和孔口接样试验对比[33-35]
    取样地点 取样方式 取样深度/m 瓦斯含量/(m3·t−1 同组瓦斯含量比值
    祁南煤矿 岩心管提钻取心 32.80 7.15 1.30
    孔口接样 32.00 5.49
    岩心管提钻取心 24.00 9.56 1.33
    孔口接样 23.40 7.20
    岩心管提钻取心 34.00 6.60 1.25
    孔口接样 33.00 5.29
    岩心管提钻取心 23.70 6.98 1.89
    孔口接样 22.90 3.69
    岩心管提钻取心 23.70 11.16 1.28
    孔口接样 23.20 8.71
    潘一煤矿 岩心管提钻取心 20.00 2.70 1.93
    孔口接样 20.00 1.40
    岩心管提钻取心 16.00 1.30 0.88
    孔口接样 13.00 1.47
    岩心管提钻取心 16.00 1.63 1.02
    孔口接样 13.00 1.60
    赵庄煤矿 岩心管提钻取心 12.80 0.55 1.17
    孔口接样 12.80 0.47
    岩心管提钻取心 12.10 1.51 1.25
    孔口接样 12.10 1.21
    岩心管提钻取心 12.40 0.61 1.15
    孔口接样 12.40 0.53

    Table2

    压力引射取样和孔口接样试验对比[43-45]
    取样地点 取样方式 取样深度/m 取样时间/min 瓦斯含量/(m3·t−1 同组瓦斯含量比值
    河南某矿 压力引射取样 80 4.0 8.93 1.47
    孔口接样 78 5.2 6.08
    压力引射取样 78 3.3 9.52 1.32
    孔口接样 76 4.5 7.21
    压力引射取样 93 4.2 10.21 1.52
    孔口接样 91 5.0 6.72
    平煤十矿 压力引射取样 23 1.0 8.80 2.14
    孔口接样 23 4.11
    压力引射取样 24 3.0 6.80 1.16
    孔口接样 24 5.86
    压力引射取样 65 5.0 9.53 1.77
    孔口接样 65 5.38
    压力引射取样 72 5.0 4.16 1.23
    孔口接样 72 3.37
    大湾煤矿 压力引射取样 62 2.0 8.89 1.42
    孔口接样 62 6.26
    压力引射取样 56 3.0 9.41 1.23
    孔口接样 56 7.63
    压力引射取样 48 3.0 12.26 1.49
    孔口接样 48 8.25

    Table3

    不同密闭取样装置技术参数对比
    结构类型 外筒尺寸/(mm×mm) 内筒尺寸/(mm×mm) 球座直径/mm 球阀关闭压力/MPa 保压能力
    双筒单动 USC-Ⅰ型 ø121×1250 ø50×800 22 3.0~4.5 4.0 MPa以上
    USC-Ⅱ型 ø100×1359 ø40×558.5 18 3.0~4.5
    三筒单动 ø93×1260 ø42×600 18 8.0~10.0 11.5 MPa

    Table4

    密闭取样和常规取样试验对比[12, 16, 18]
    取样地点 煤体结构 取样方式 取样深度/m 瓦斯含量/(m3·t−1) 同组瓦斯含量比值/% 备注
    河南焦作矿区 煤体主要为原生结构,
    f值为0.86~1.92
    密闭取样 100 9.38 1.80
    常规取样 5.20
    密闭取样 300 9.04 1.28
    常规取样 7.05
    密闭取样 400 5.40 1.24
    常规取样 4.37
    山西晋城矿区 煤体以原生结构、
    碎裂结构为主,
    f值为1.0~2.0
    密闭取样 120 9.73 1.26 常规取样为顺煤层
    定向长钻孔
    常规取样 7.70
    密闭取样 180 7.34 2.38
    常规取样 3.08
    密闭取样 304 11.68 2.81
    常规取样 4.16
    密闭取样 360 11.18 1.71
    常规取样 6.52
    密闭取样 150 7.08 1.03 常规取样在煤层底板巷
    采用穿层短钻孔
    常规取样 23 6.86
    密闭取样 200 7.42 0.97
    常规取样 28 7.62
    密闭取样 300 7.03 1.07
    常规取样 25 6.60
    密闭取样 350 7.14 1.04
    常规取样 24 6.86
    密闭取样 400 7.38 1.01
    常规取样 31 7.30

    Table5

    煤层瓦斯含量测试方法对比[22-28, 36, 49]
    解吸法 标准 适用范围 取样方式 暴露时间/min 取样质量/g 测试方式 煤层瓦斯含量组成
    温度 残余气确定
    地勘解吸法 AQ 1046—2007 地质勘探钻孔测定 地面提钻 ≤8 ≥400 常温95~100 ℃恒温 真空脱气+粉碎后自然解吸 损失气量+
    解吸气量+
    脱气量
    GB/T 23249—2009
    井下解吸法 GB/T 23250—2009 煤矿井下直接测定 井下提钻 ≤5 ≥400 损失气量+
    井下解吸气量+
    脱气量/常压解吸气量
    自然解吸法 NB/T 10018—2015 低煤阶煤层含气量测定 地面提钻 ≤10 ≥800 常温 粉碎后自然解吸 损失气量+
    解吸气量+
    残余气量
    GB/T 19559—2004 烟煤、无烟煤煤层气含量
    测定
    GB/T 19559—2008
    GB/T 19559—2021
    加温解吸法 GB/T 28753—2012 烟煤、无烟煤煤层气含量
    测定
    地面提钻 ≤10 ≥800 50 ℃或储层温度 粉碎后恒温解吸 损失气量+
    解吸气量+
    残余气量
    密闭取样解吸法 GB/T 35053—2018 地面煤层气含量测定 地面提钻或绳索打捞 ≥800 常温 粉碎后自然解吸 解吸气量+
    残余气量

    Table6

    各煤矿井下瓦斯含量直接测试试验对比[30-31, 50-51]
    取样地点 测试方式 瓦斯含量/(m3·t−1 同组瓦斯含量比值
    大转湾煤矿 DGC测试 8.59 1.09
    实验室测试 7.90
    兴凤煤矿 DGC测试 6.66 1.08
    实验室测试 6.18
    宏福煤矿 DGC测试 7.36 0.89
    实验室测试 8.31
    大湾煤矿 DGC测试 4.50 1.05
    CYW50测试 4.30
    DGC测试 5.40 1.06
    CYW50测试 5.08
    DGC测试 4.18 1.00
    CYW50测试 4.17
    DGC测试 5.23 0.98
    CYW50测试 5.36
    晋城成庄矿 CHP50M测试 13.15 1.01
    实验室测试 13.02
    焦作古汉山矿 CHP50M测试 5.99 1.02
    实验室测试 5.89
    洛阳何庄矿 CHP50M测试 4.82 1.07
    实验室测试 4.52
    潘三矿 CWH12测试 2.61 1.21
    井下+地面测试 2.16
    CWH12测试 2.02 0.97
    井下+地面测试 2.08
    朱集东矿 CWH12测试 2.77 1.09
    井下+地面测试 2.54
    CWH12测试 5.02 1.00
    井下+地面测试 5.03
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联