• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
低压超声速磨料空气射流喷嘴结构
  • Title

    Structure of low-pressure supersonic abrasive air jet nozzle

  • 作者

    刘勇李志平魏建平蔡玉波余大炀黄逸

  • Author

    LIU Yong;LI Zhiping;WEI Jianping;CAI Yubo;YU Dayang;HUANG Yi

  • 单位

    河南理工大学 瓦斯地质与瓦斯治理国家重点实验室培育基地煤炭安全生产与清洁高效利用省部共建协同创新中心

  • Organization
    State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Henan Polytechnic University
    State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization
  • 摘要

    硬岩隧道掘进刀具磨损严重、换刀频繁是限制高效掘进的主要因素,低压磨料空气射流辅助刀具破岩是突破硬岩隧道掘进技术瓶颈的可行性思路,为实现辅助高横移速度刀具破岩,提出了矩形喷嘴。矩形喷嘴能有效提高磨料在移动方向集束性,进而减小切缝宽度,提高切缝深度。为明确矩形喷嘴对磨料加速及破岩的影响规律,采用加长扩张段长度和截面近似等效设计了圆形喷嘴及矩形喷嘴;然后基于数值方法确定了喷嘴扩张段长度对气体及磨料加速的影响,并对比分析了喷嘴不同断面形状对磨料加速和分布特征的影响。最后通过开展低压磨料空气射流冲蚀破碎花岗岩实验,研究了喷嘴结构和横移速度对冲蚀效果的影响,分析了不同断面形状喷嘴的切割效率,确定了适用辅助刀具破岩的最佳喷嘴结构。数值结果表明压力2 MPa时,加长扩张段长度,气固两相能量转化更充分,磨料加速更充分,但随着喷嘴扩张段持续加长,磨料速度提升不明显;相比圆形断面喷嘴,矩形断面喷嘴对磨料加速稍差,但仍能将磨料加速至300 m/s,且经矩形喷嘴加速的磨料在自由流域呈扁平矩形分布,有效提高了磨料在刀具横移方向的集束性。实验表明圆形喷嘴扩张段加长,岩石冲蚀深度不断增加,当扩张段长度为145 mm时,花岗岩冲蚀深度分别为23.90、20.23 mm,扩张段长度持续加长,岩石的冲蚀深度提高并不显著。当横移速度为0.02 m/s时,喷嘴C4、R1、R2切割玄武岩深度分别为3.35、12.15、8.25 mm,花岗岩深度分别为5.2、14.9、11.5 mm;横移速度为0.30 m/s时,喷嘴C4、R1切割玄武岩深度分别为0.8、3.0 mm,花岗岩深度分别为1.0、3.6 mm。对比喷嘴C4,和数值模拟结果相同,矩形喷嘴能使磨料聚能、磨料利用充分,切割效率较优。且喷嘴R1的切割效率最好,喷嘴结构最优。研究结论将为磨料空气射流辅助刀具破岩提供理论和技术支撑。

  • Abstract

    Cutter wear and frequent cutter change in hard rock tunneling are the main factors limiting an efficient tunneling. Low-pressure abrasive air jet assisted cutter rock breaking is a feasible idea to break through the bottleneck of rock breaking technology in hard rock tunnel. To achieve assisted high traverse speed cutter breaking, a rectangular nozzle was proposed. The rectangular nozzle can effectively improve the agglomeration of the abrasive in the moving direction, thereby reducing the cutting width, and improve the cutting depth. To clarify the influence of rectangular nozzle on abrasive acceleration and rock breaking, a circular nozzle and a rectangular nozzle were designed with approximately equivalent lengthening divergent section length and cross-section, and then the influence of nozzle divergent section length on gas and abrasive acceleration was determined based on numerical methods, and the influence of different cross-sectional shapes of nozzles on abrasive acceleration and distribution characteristics were comparatively analyzed. Finally, by carrying out the low-pressure abrasive air jet erosion crushing granite experiment, the influence of nozzle structure and traverse velocity on the erosion effect was studied, the cutting efficiency of nozzles with different cross-sectional shapes was analyzed, and the optimal nozzle structure suitable for rock breaking by assisted tools was determined. The numerical study results show that when the pressure is 2 MPa, the length of the divergent section is extended, the gas-solid two-phase energy conversion is more complete, and the abrasive acceleration is more sufficient, but with the continuous lengthening of the nozzle divergent section, the abrasive speed is not significantly increased. Compared with the circular nozzle, the rectangular nozzle is slightly worse at the abrasive acceleration, but it can still accelerate the abrasive to 300 m/s, and the abrasives accelerated by the rectangular nozzle are distributed flat and rectangular in the free flow basin, which effectively improves the agglomeration of the abrasive in the horizontal movement direction of the cutter. Experiments show that the divergent section of the circular nozzle is lengthened, and the erosion depth of rock is increasing, when the length of the divergent section is 145 mm, the erosion depth of granite is 23.90 mm and 20.23 mm, respectively, and the continuous lengthening of the divergent section length, and the erosion depth of rock is not significantly improved. When the traverse speed is 0.02 m/s, the cutting depths of basalt of nozzles C4, R1 and R2 are 3.35 mm, 12.15 mm and 8.25 mm, and the granite depths are 5.2, 14.9 and 11.5 mm, respectively. When the traverse speed is 0.30 m/s, the depths of basalt cutting by nozzles C4 and R1 are 0.8 mm and 3.0 mm, and the granite depths are 1.0 mm and 3.6 mm, respectively. Compared with the nozzle C4, the same as the numerical simulation results, the rectangular nozzle can make the abrasive energy concentrate, the abrasive utilization is fully utilized, and the cutting efficiency is better. And the cutting efficiency of nozzle R1 is the best, and the nozzle structure is the best. The research will provide theoretical and technical support for the abrasive air jet assisted cutter rock breaking.

  • 关键词

    磨料空气射流喷嘴结构硬岩掘进磨料加速分布切割效率

  • KeyWords

    abrasive air jet;nozzle structure;hard rock tunneling;abrasive acceleration and distribution;cutting efficiency

  • 基金项目(Foundation)
    国家自然科学基金资助项目(52174170,52374192,52374193)
  • DOI
  • 引用格式
    刘勇,李志平,魏建平,等. 低压超声速磨料空气射流喷嘴结构[J]. 煤炭学报,2024,49(3):1704−1716.
  • Citation
    LIU Yong,LI Zhiping,WEI Jianping,et al. Structure of low-pressure supersonic abrasive air jet nozzle[J]. Journal of China Coal Society,2024,49(3):1704−1716.
  • 相关文章
  • 图表

    Table1

    不同圆形喷嘴结构参数
    喷嘴喷嘴膨胀比(PNR)入口直径d1/mm喉部直径d2/mm出口直径d3/mm收敛段长L1/mm扩张段长L2/mm
    C11.12166.210.141525
    C265
    C3105
    C4127
    C5145

    Table2

    不同断面形状的喷嘴结构参数
    喷嘴 喷嘴膨胀比(PNR) 入口尺寸/mm 喉部尺寸/mm 出口尺寸/mm 收敛段长L1/mm 扩张段长L2/mm
    C4 1.12 16 6.2 10.14 15 127
    R1 16 3×10 4×20 15 127
    R2 25 3×10 4×20 15 127

    Table3

    初始条件和边界条件
    参数 数值
    颗粒温度/K 300
    颗粒密度/(kg·m−3) 3750
    颗粒粒径/mm 0.18
    颗粒质量流量/(g·s−1) 16
    喷嘴入口压力/MPa 2
    环境温度/K 300
    环境压力/Pa 101325
    气体黏度/(μPa·s−1) 17.894
    气体比热/(J·(kg·K)−1) 1006
    气体热导率/(W·(m·K)−1) 0.0242
    碰撞恢复系数 0.5

    Table4

    不同圆形喷嘴数值模拟方案
    射流压力/MPa 磨料质量流量/(g·s−1) 入口直径/mm 喉部直径/mm 出口直径/mm 收敛段长度/mm 扩张段长度/mm
    2 16 16 6.2 10.14 15 25、65、105、127、145

    Table5

    不同形状喷嘴数值模拟方案
    喷嘴 射流压力/MPa 磨料质量流量/(g·s−1) 入口尺寸/mm 喉部尺寸/mm 出口尺寸/mm 收敛段长度/mm 扩张段长度/mm
    C1 2 16 16 6.2 10.14 15 127
    R1 16 3×10 4×20
    R2 8×25 3×10 4×20

    Table6

    圆形喷嘴破岩实验方案
    喷嘴 压力/MPa 质量流量/(g·s−1) 靶距/mm 冲蚀时间/s 岩样
    C1 2 16 20 10 花岗岩
    C2
    C3
    C4
    C5

    Table7

    矩形喷嘴破岩实验方案
    喷嘴 压力/
    MPa
    质量流量/
    (g·s−1)
    靶距/
    mm
    冲蚀时间/
    s
    移动速度/
    (m·s−1)
    岩样
    C4 2 16 20 10 0.02、0.30 玄武岩
    花岗岩
    R1 0.02、0.30
    R2 0.02
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联