• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
水泥行业SCR中温脱硝催化剂研究进展
  • Title

    Research progress of SCR medium temperature denitrification catalyst for cement industry

  • 作者

    韩宇轩周宇谭晨晨吴鹏丁世鹏沈凯张亚平

  • Author

    HAN Yuxuan;ZHOU Yu;TAN Chenchen;WU Peng;DING Shipeng;SHEN Kai;ZHANG Yaping

  • 单位

    东南大学能源与环境学院能源热转换及其过程测控教育部重点实验室

  • Organization
    Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University
  • 摘要
    选择性催化还原技术(SCR)在水泥行业脱硝中被广泛应用,其中,高温范围内(280–350 ℃)已有较为完善的SCR技术及体系,但在中温区仍有待突破。本工作以中温脱硝催化剂为重点,综述了Mn、Ce、V系脱硝催化剂的研究进展,并分析了Sm、Nb、Ho、Sb、La、Mo、Pr的掺杂对于脱硝催化剂的改性,结合水泥窑炉烟尘中SO2、H2O、碱金属含量高的特点,分析了脱硝催化剂中毒原因,对催化剂的抗H2O、SO2、碱金属中毒性能进行了探讨,展望了水泥行业SCR中温脱硝催化剂的研究前景。
  • Abstract
    Selective catalytic reduction (SCR) technology has been widely used in the denitrification of cement industry, in which a relatively mature system has been formed in the high temperature (280–350 ℃) section, but there is still a breakthrough in the middle temperature zone. Focusing on medium temperature catalysts, this paper reviewed the progress of Mn, Ce and V catalysts, and analyzed the doping of Sm, Nb, Ho, Sb, La, Mo and Pr to improve the performance of catalysts. Combined with the characteristics of the high content of SO2, H2O and alkali metal in cement kiln smoke, the causes of catalyst poisoning were analyzed, and the way to resist sulfur poisoning, water poisoning, and alkali metal poisoning was summarized. The research prospect of SCR medium temperature denitration catalyst in cement industry is prospected.
  • 关键词

    选择性催化还原脱硝水泥脱硝碱金属

  • KeyWords

    selective catalytic reduction;de NOx;cement denitration;alkali metal

  • 基金项目(Foundation)
    国家重点研发计划(2021YFB3500604)资助
  • DOI
  • 引用格式
    韩宇轩, 周宇, 谭晨晨, 吴鹏, 丁世鹏, 沈凯, 张亚平. 水泥行业SCR中温脱硝催化剂研究进展[J]. 燃料化学学报(中英文), 2024, 52(5): 756-774.
  • Citation
    HAN Yuxuan, ZHOU Yu, TAN Chenchen, WU Peng, DING Shipeng, SHEN Kai, ZHANG Yaping. Research progress of SCR medium temperature denitrification catalyst for cement industry[J]. Journal of Fuel Chemistry and Technology, 2024, 52(5): 756-774.
  • 相关文章
  • 图表

    Table1

    表 1 Mn系催化剂活性
    Catalyst/CarrierGHSV/h−1Temperature/℃Catalyst preparationReference
    MnOx4700080–150rheological phase reaction[28]
    MnOx4700080–150solid[29]
    Tunneled α-MnO238000120–200hydrothermal[30]
    γ-MnO230000140–200thermal decomposition[31]
    γ-MnO2 nanosheets35000150–230hydrothermal[32]
    MnOx36000120–180hydrothermal[33]
    MnOx-γAl2O360000200–350impregnation[44]
    Mn/TiO2 30%100000200–300sol-gel[46]
    MnTiEu-0.336000180–390coprecipitation[48]
    30%Mn/TiO2-3%Nd40000100–350impregnation[49]
    20%Mn-10%Sm/TiO280000110–250impregnation[50]
    MnOx-C/C4000~150impregnation[52]
    MnOx-CeO210600100–150impregnation[53]
    Mn/REC105000150–250in-situ synthesis[54]

    Table2

    表 2 Ce系催化剂活性
    Catalyst/CarrierGHSV/h−1Temperature/℃Catalyst preparationReference
    CeO2-Ar36000120–400citric acid[57]
    50%CeO2-Ti30000180–400coprecipitation[67]
    5%Ce-TiO250000275–400impregnation[69]
    Ce0.6Ti50000300–400sol-gel[70]
    Sn(0.1)Mn(0.4)CeOx3500080–230coprecipitation[71]
    MnOx(0.3)-CeO242000100–180citric acid[72]
    MnOx(0.3)-CeO242000120–150citric acid[73]
    Mn1Ce964000100–200surfactant-template[74]
    Ce0.6Fe0.4O290000200–400impregnation[77]
    Ce-Fe(1:0.35)6000200–300microwave hydrothermal[78]
    Ce-Fe-Ox18000250–450hydrothermal[79]
    Ce0.3TiF1.541000180–240coprecipitation[81]
    CuO-CeO2-TiO230000150–250sol-gel[82]
    CeO2/TiO2-MoO360000200–350hydrothermal[83]
    Cu-Ce0.25-Zr0.75/TiO2100000165–450impregnation[84]
    Ce20Nb20Ti90000250–450sol-gel[85]

    Table3

    表 3 V系催化剂活性
    Catalyst/carrierGHSV/h−1Temperature/℃Catalyst preparationReference
    Ti0.9V0.1O2−δ (304/20)24000200–400Stagnation Premixed
    flame system
    [86]
    V1Ce5Ti12800325–450impregnation[93]
    V/Ce1-xTixO2(x = 0.3, 0.5)70000190–300coprecipitation[94]
    5V30Ce/TiO210000180–220impregnation[95]
    V-W/Ce/Ti-5%18000280–450impregnation[97]
    V/7Mo-Ti180000300–360impregnation[98]
    VWSbTi10000350–400impregnation[99]
    Cr0.2V0.8/TiO260000160–300impregnation[100]
    VWCeCuTi60000250–375impregnation[101]
    3V3Nb/WTi60000225–400impregnation[102]

    Table4

    表 4 其他稀土改性催化剂活性
    Catalyst/carrierGHSV/h−1Temperature/℃Catalyst preparationReference
    20Mn-10Sm/TiO280000110–250impregnation[50]
    Sm-Mn-0.14860075–200coprecipitation[103]
    SmCeTi90000250–425coprecipitation[104]
    MnSmZrTiOx30000125–274coprecipitation[105]
    MnCeNbTiOx180000125–275coprecipitation[106]
    Nb-VOx/CeO250000175–350coprecipitation[108]
    MnNb0.4Ce0.2Ox30000120–240coprecipitation[109]
    Fe0.3Ho0.1Mn0.4/TiO22000060–200impregnation[110]
    Mn0.4Ce0.07Ho0.1/TiO210000140–220impregnation[111]
    Fe0.3Ho0.1Mn0.4/TiO22000060–200impregnation[112]
    V2.7Sb2Ti5000225–375impregnation[113]
    SbV10Ce/TiO260000250–400impregnation[114]
    CeSbZrOx50000225–350coprecipitation[115]
    Sb1.0CeZr2Ox40000200–360citric acid[116]
    La2.6CuMnOx24000250–350coprecipitation[117]
    LaMnO3/hematite9000150–240impregnation[120]
    CeMoTiOx150000200–425coprecipitation[122]
    Ce40Mo10Ti90000250–450coprecipitation[125]
    Mo/CeTiOx48000200–400coprecipitation[126]
    V2O5-MoO3/Pr6O11-TiO230000220–400sol-gel[127]
    PrOx(0.2)-MnOx/SAPO-3440000140–280solvent dispersion[128]
    Fe-Mn/TiO2 (0.02Pr)30000140–220impregnation[129]
    MnPrOx-0.130000120–220coprecipitation[130]

    Table5

    表 5 催化剂抗中毒性能
    Catalyst/carrierGHSV/h−1Temperature/℃Toxic concentrationCatalyst preparationReference
    Mn-Ce/TiO2400001501.0×10–4 SO2,3% H2Osol-gel[133]
    30Ce6W36000250–4751.0×10–4 SO2coprecipitation[134]
    CeSi290000200–4005.0×10–4 SO2,5% H2Ocoprecipitation[135]
    Ce0.6Zr0.4O290000250–3002.0×10–4 SO2coprecipitation[137]
    FeMnOx/Ce300001201.0×10–4 SO2citric acid[138]
    3V6Nb/WTi600002255.0×10–4 SO2,5% H2Oimpregnation[102]
    MnNb0.4Ce0.2Ox30000120–2402.0×10–4 SO2,7% H2Ocoprecipitation[109]
    MnTiEu-0.3360002005.0×10–5 SO2,5% H2Ocoprecipitation[48]
    2Fe4Co-MCT120002002.0×10–4 SO2impregnation[139]
    Mn0.2Ti0.8O2600001505% H2Ohydrothermal[140]
    MnCe/GAC-CNTs100001505.0×10–4 SO2,5% H2Oimpregnation[143]
    Mn2Nb1Ox500002005% H2Ocoprecipitation[144]
    MnCo2O4320002006% H2Ocoprecipitation[145]
    MnO2-Co-0.8500002001.0/2.0×10–4 SO2,5% H2Ohydrothermal[146]
    Ce/TiO2108000100–400Ca/Ce = 0.05sol-gel[147]
    Ce/TiO2108000100–220Na:Ce =0.2sol-gel[148]
    V/W/Ti30000250–400Ca /V=0, 1, 2, 3impregnation[149]
    V2O5/TiO296000310Ca/V =0–0.2impregnation[150]
    P-Ce/TiO2108000250–400K/Ce=0.2coprecipitation[151]
    V2O5-WO3/TiO2-CeO2-ZrO260000250–400K2O=1%coprecipitation[152]
    V2O5-WO3/TiO2-CeO2-ZrO260000200–450K2O=1%coprecipitation[153]
    CeO2-MnOx/TiO2120000175–300K=10/25/50 μmol/gcoprecipitation[154]
    MoO3
    (V-HMoO)
    66000280–420K2O=1%hydrothermal[155]
    K-MnO26000050–200K=4.22%[156]
    CeO2-WO3120000200–450CaO=5%impregnation[157]
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联