• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
宁夏回族自治区碳捕集、利用与封存源汇匹配与集群部署
  • Title

    Source-sink matching and cluster deployment of carbon capture, utilization, and storage in Ningxia Hui Autonomous Region

  • 作者

    刘世奇莫航桑树勋刘统

  • Author

    LIU Shiqi;MO Hang;SANG Shuxun;LIU Tong

  • 单位

    中国矿业大学 江苏省煤基温室气体减排与资源化利用重点实验室中国矿业大学 碳中和研究院中国矿业大学 资源与地球科学学院中国矿业大学 煤层气资源与成藏过程教育部重点实验室

  • Organization
    Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology
    Carbon Neutrality Institute, China University of Mining and Technology
    School of Mineral Resource and Geoscience, China University of Mining and Technology
    Key Laboratory of Coalbed Methane Resource and Reservoir Formation Process, Ministry of Education, China University of Mining and Technology
  • 摘要

    “双碳”(碳达峰、碳中和)战略背景下,碳捕集、利用与封存技术(CCUS)是实现化石能源大规模低碳化利用的关键技术之一。近年,CCUS技术呈现出规模化和集群化发展趋势,而科学、合理的源汇匹配是CCUS集群部署工程选址的重要依据,能够建立高效CO2输运管网、降低减排成本。宁夏是国家能源安全战略布局的重要保障基地,能源结构偏煤、工业结构偏重特征明显,面临着巨大的碳减排压力。针对宁夏CCUS集群部署的源汇匹配问题,调研评估了宁夏工业碳排放源特征和地质碳汇潜力,构建了CCUS源汇匹配模型,在充分考虑源汇性质、捕集−输运−封存成本、CO2运输距离、区域地理条件、土地利用类型、人口密度等因素基础上,应用改进的节约里程法和基于地理信息系统(GIS)的最低成本路径优化法,结合ArcGIS平台和优化求解软件,获得了宁夏CCUS源汇匹配优化和应用方案,并提出宁夏CCUS集群部署建议。结果表明,截止2021年,宁夏工业碳排放源107个,碳排放总量2.26亿t/a,以化工(含自备电厂)和电力行业碳排放为主。宁夏主要封存地质体包括深部咸水层、深部不可开采煤层和油气藏,CO2理论地质封存容量151.55亿t,以深部咸水层封存潜力最大。宁夏CCUS源汇匹配效果较好,在源汇直接相连的情况下,区内年排放量10万t以上的大型工业排放源CCUS集群部署(30 a规划期)总成本约2.45万亿元,并以捕集成本为主,占比83.65%,单位减排成本402.32元/t,共需建设CO2运输管道2 459 km;改进的节约里程法和基于GIS的最低成本路径优化法可大幅降低CCUS集群部署成本,优化后CCUS单位减排成本降至381.76元/t,节约管道建设里程938 km。宁夏应聚焦电力、化工等“两高”(高耗能、高排放)行业,在以宁东能源化工基地为重点的北部、东部地区超前应用CCUS技术,打造宁东能源化工基地、银川—吴忠、石嘴山、中卫和固原5个CCUS特色集群,构建宁夏特色的工程化CCUS全流程技术模式。

  • Abstract

    In the context of the “dual carbon” (carbon peak and carbon neutrality) strategy, the carbon capture, utilization, and storage (CCUS) is one of the key technologies for achieving large-scale low-carbon utilization of fossil energy. In recent years, the CCUS has shown a trend of scaling and clustering development. The scientific and reasonable source-sink matching for the CCUS is an important basis for the site selection of the CCUS cluster deployment projects, and can establish some efficient pipe networks and reduce the emission reduction costs of CCUS. Ningxia is an important guarantee base for the strategic layout of national energy security, facing an enormous pressure of CO2 emission reduction due to its obvious characteristics of coal-oriented energy structure and industrial structure. In view of the source-sink matching problem of CCUS cluster deployment in Ningxia, the characteristics of industrial carbon emission sources and geological carbon sink potential in Ningxia were investigated and evaluated, and the CCSU source-sink matching model was constructed. Then, based on a full consideration of source and sink properties, costs of capture, transport, and storage, transportation distance. regional geographical conditions, land use types, population density, etc. the source-sink matching optimization and application scheme in Ningxia were obtained using the improved mileage saving method and the lowest cost path optimization method based on GIS (geographic information system), combining ArcGIS platform and optimization solution software. Finally, the suggestions for the CCUS cluster deployment in Ningxia were presented. The results show that as of 2021, Ningxia has 107 industrial carbon emission sources, with a total carbon emission of 226 million tonnes per year, mainly from the chemical industry (including self-owned power plants) and the power industry. The main geological bodies for storage in Ningxia include deep saltwater layers, deep non-exploitable coal seams, and oil and gas reservoirs. The theoretical geological storage capacity of CO2 is 15.155 billion tonnes, with the deep saltwater layer having the greatest storage potential. The CCUS source-sink matching in Ningxia is well. In the case of direct connection of sources and sinks, the total cost of CCUS cluster deployment (30 years planning period) of large industrial carbon emission source with annual emission of over 100 000 tonnes in Ningxia is about 2.45 trillion yuan, mainly from capture costs, which accounting for 83.65%. The unit emission reduction cost of CCUS is 402.32 yuan/t, and a total of 2 459 km of CO2 transportation pipelines need to be constructed. The improved mileage saving method and the lowest cost path optimization method based on GIS can significantly reduce the total cost of CCUS cluster deployment after optimization, the unit emission reduction cost of CCUS is reduced to 381.76 yuan/t, and the pipeline construction mileage reduced by 938 km. Ningxia should focus on its “two high” (high energy consumption, high emissions) industries, such as power industry and chemical industry. The application of CCUS technology in the northern and eastern regions, should be in advance to create five characteristic CCUS clusters, including Ningdong energy chemical industry base, Yinchuan-Wuzhong, Shizuishan, Zhongwei, and Guyuan. Then, the engineered full flowsheet technology of CCUS technology model is established with Ningxia’s characteristics.

  • 关键词

    碳捕集、利用与封存源汇匹配管网优化CCUS集群部署宁夏

  • KeyWords

    carbon capture, utilization, and storage;source-sink matching;pipe network optimization;CCUS cluster deployment;Ningxia

  • 基金项目(Foundation)
    国家自然科学基金碳中和专项基金资助项目(42141012);江苏省碳达峰碳中和科技创新专项资金重大科技示范资助项目(BE2022603);中央高校基本科研业务费专项资金资助项目(2023KYJD1001)
  • DOI
  • 引用格式
    刘世奇,莫航,桑树勋,等. 宁夏回族自治区碳捕集、利用与封存源汇匹配与集群部署[J]. 煤炭学报,2024,49(3):1583−1596.
  • Citation
    LIU Shiqi,MO Hang,SANG Shuxun,et al. Source-sink matching and cluster deployment of carbon capture, utilization, and storage in Ningxia Hui Autonomous Region[J]. Journal of China Coal Society,2024,49(3):1583−1596.
  • 相关文章
  • 图表

    Table1

    宁夏主要大型工业碳排放源
    产业类型 排放源数量/个 碳排放量/(亿t·a−1) 占比/%
    化工 46 0.73 32.47
    火电 32 1.10 48.69
    热电联产 6 0.20 8.83
    建材 18 0.20 8.64
    其他 5 0.03 1.37
    合计 107 2.26 100

    Table2

    宁夏碳排放源集群及其碳排放量
    碳排放集群 排放源数量/个 碳排放量/(亿t·a−1) 占比/%
    宁东能源化工基地集群 46 1.10 48.52
    银川—吴忠集群 32 0.62 27.41
    石嘴山集群 6 0.32 14.35
    中卫集群 18 0.16 6.96
    固原集群 5 0.06 2.76
    合计 107 2.26 100

    Table3

    宁夏CO2地质封存潜力
    封存类型 封存汇 理论封存容量/亿t
    CO2驱替煤层气封存 宁东煤田 1.40
    贺兰山煤田 0.11
    宁南煤田 0.37
    香山煤田 0.03
    合计 1.91
    CO2深部咸水层封存 石嘴山 0.97
    银川 23.42
    吴忠 97.73
    固原 27.50
    合计 149.61
    CO2驱油封存 宁东油田 0.03
    合计 151.55

    Table4

    不同类型排放源与封存汇的捕集与封存成本
    类别 排放源/封存汇 捕集/封存成本/(元·t−1)
    火电厂 亚临界机组 351.86
    超临界机组 294.92
    超超临界机组 254.04
    工业工厂 乙醇 245.60
    221.08
    天然气加工 147.36
    煤制液 73.71
    钢铁 707.85
    水泥 715.00
    封存场地 驱油封存 70.79
    咸水层封存 109.18
    煤层封存 39.96

    Table5

    障碍条件及所对应的成本因子[37]
    施工条件 成本因子
    基本工况 1.0
    地形坡度(A)/% 10~20 0.1
    20~30 0.4
    > 30 0.8
    城市 15.0
    土地利用类型(G) 建筑用地 15.0
    湿地/沼泽 15.0
    自然保护区 30.0
    公园 15.0
    绕行障碍物类型 穿越河流/湖泊(B) 10.0
    穿越铁路/公路(D/E) 3.0
    人口密度(F)/(人·km−2) 10~100 5.0
    100~300 10.0
    > 300 15.0

    Table6

    宁夏CCUS集群部署成本(30 a)
    匹配输运路线(序号) CO2输运量/亿t CCUS成本/亿元 匹配输运路线(序号) CO2运输量/亿t CCUS成本/亿元
    排放源 封存汇 排放源 封存汇
    1 6 3.85 159267 19 7 18.04 654331
    2 6 0.29 17411 20 7 1.61 59663
    3 6 1.24 56037 21 1 1.40 68867
    4 5 0.97 40084 21 7 0.45 1920
    5 6 2.32 93201 22 7 0.02 532
    6 6 0.27 12754 22 9 0.03 2946
    7 6 1.45 55073 23 7 0.41 25163
    8 6 3.70 137972 24 7 0.30 20050
    9 6 0.49 18745 25 7 0.27 20997
    10 2 0.09 8466 26 7 1.67 78435
    11 6 0.27 12859 27 6 1.20 56135
    12 7 3.83 150159 28 6 0.07 9215
    13 7 2.21 88494 29 4 0.03 3112
    14 7 3.50 133155 30 6 0.35 23389
    15 6 4.22 161664 31 6 0.85 46733
    16 7 2.69 112814 32 3 0.35 16363
    17 6 0.86 35536 33 8 1.30 51073
    18 7 0.22 11431 34 8 0.04 3871
      注:总输运量60.85×108 t,CCUS总成本24 478.99×1010元。

    Table7

    节约里程优化前后对比(30 a)
    运输路线
    (源−源)
    优化前运输
    成本
    优化后运输
    成本
    节约成本 运输路线
    (源−源)
    优化前运输
    成本
    优化后运输成本 节约成本
    1−2 213.36 29.81 183.55 16−17 165.43 33.51 131.92
    3−2 115.74 32.35 38.34 12−13 129.06 14.41 114.65
    2−5 70.69 55.08 60.66 13−14 92.35 28.75 63.60
    5−6 101.72 58.10 12.59 14−21 79.83 53.32 26.51
    6−7 30.89 56.46 45.25 18−19 34.09 30.65 3.43
    8−7 55.51 15.85 15.04 19−20 86.58 33.47 53.11
    11−9 31.93 16.03 15.90 25−24 108.05 17.49 90.56
    31−28 163.82 12.43 151.40 26−24 186.04 35.89 150.15
    28−30 67.99 12.77 55.22 24−23 94.18 116.32 −22.14
    30−27 108.24 26.30 81.94 22−9 7.56 7.56 0.00
    27−16 131.22 159.09 −27.87 34−33 25.17 17.63 7.54
    15−16 106.85 14.90 91.95
      注:节约总里程 938 km ,节约总成本 1250.81亿元。

    Table8

    宁夏CCUS特色集群技术选择及部署建议
    CCUS集群 CCUS技术选择 CCUS技术模式建议
    宁东能源化工基地 ● CO2咸水层封存
    ● CO2驱油气封存
    ● CO2-ECBM
    ① 燃煤电厂+CCUS:国家能源集团宁夏煤业有限责任公司煤制油分公司、神华国能宁夏鸳鸯湖发电、神华国能宁夏煤电等;
    ② 煤化工+CCUS:国家能源集团宁夏煤业有限责任公司煤制油分公司、宁夏和宁化学、中石化长城能源化工等
    银川-吴忠集群 ● CO2-ECBM
    ● 废弃矿井CO2封存
    ① 燃煤电厂+CCUS:国能宁夏灵武发电、宁夏电投西夏热电、国能宁夏大坝发电等;
    ② 石化+CCUS:中石油宁夏石化等;
    ③ 水泥+CCUS:宁夏赛马水泥、宁夏瀛海天琛建材、宁夏青铜峡水泥等;
    ④ 电解铝+CCUS:青铜峡铝业股份等
    石嘴山集群 ● CO2-ECBM
    ● 废弃矿井CO2封存
    ① 燃煤电厂+CCUS:国能宁夏石嘴山发电、宁夏天瑞热能制供、大武口热电等;
    ② 化工+CCUS:平罗县滨河碳化硅等、宁夏精细化工基地等;
    ③ 钢铁+CCUS:宁夏兴华钢铁等
    中卫集群 ● CO2-ECBM
    ● 废弃矿井CO2封存
    ● 矿化封存
    ① 燃煤电厂+CCUS:国能中卫热电、宁夏中宁发电等;
    ② 钢铁+CCUS:宁刚集团等;
    ③ 水泥+CCUS:宁夏胜金水泥、宁夏瀛海天祥建材等;
    ④ 电解铝+CCUS:宁夏宁创新材料科技等
    固原集群 ● CO2-ECBM
    ● 废弃矿井CO2封存
    ● BECCS
    ① 燃煤电厂+CCUS:中铝宁夏能源集团六盘山热电厂等;
    ② 垃圾焚烧电厂+CCUS:固原市天楹垃圾焚烧电厂等
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16  技术支持:云智互联